

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

Software Resolved Networks

Software Resolved Networks (SRN) are a variant of the SDN architecture.
An SRN is a network that is managed by a logically centralized controller.
The name SRN originates from the fact that the architecture co-locates
its controller with a DNS resolver and uses extensions of the DNS protocol
to interact with endhosts.

Getting started

Prerequistes

Two libraries must be installed:

	jansson [https://github.com/akheron/jansson]

	zlog [https://hardysimpson.github.io/zlog/]

Several other software are required:

	DNS server like bind [https://www.isc.org/downloads/bind/]

	ovsdb [https://github.com/openvswitch/ovs]

A modified version of quagga [http://www.nongnu.org/quagga/index.html] is used and therefore, a quagga user must be created.

Compiling

Simply running make will compile the code. Note that jansson [https://github.com/akheron/jansson/] and zlog [https://hardysimpson.github.io/zlog/] libraries must be installed and that this repository submodules [https://git-scm.com/book/nl/v1/Git-tools-Submodules] must be cloned.

Deployment of SRN

Quick emulation

To quickly emulate an SRN, you can use the library srnmininet [https://github.com/segment-routing/srnmininet]. More information can be found in this repository.

Manual setup

If you wish to deploy it in a real environment, you have to perform the following steps.

	Get the OVSDB server ready by running it on the controller node.

ovsdb-tool create sr.ovschema SR_test
ovsdb-server SR_test --remote=ptcp:6640:[::1] --remote=ptcp:6640:[<global-ipv6-address>]

	Fill the OVSDB database with routers and links.

$ ovsdb-client transact tcp:[::1]:6640 "[\"SR_test\",{\"row\":${row},\"table\":\"NameIdMapping\",\"op\":\"insert\"}]"

with row being one-line string representing a JSON object of the form:
{
	"routerName": "RouterA", # The name of the router
	"routerId": "0.0.0.1", # The OSPFv3 Router ID (useful to map link/router loss to the router line in OVSDB)
	"addr": "fd:1234::1", # The address on the loopback interface of this router
	"prefix": "fd:1234:24::/64;fd:1234:10::/64", # The list of sub-networks prefixes directly connected to the router
	"pbsid": "fd:1234::/64" # The range of IP addresses that can be used as Binding SID for this router. You will typically choose the a /64 prefix of a loopback address.
}

$ ovsdb-client transact tcp:[::1]:6640 "[\"SR_test\",{\"row\":${row},\"table\":\"AvailableLink\",\"op\":\"insert\"}]"

with row being one-line string representing a JSON object of the form:
{
	"name1": "RouterA", # The name of an endpoint of the link
	"name2": "RouterB", # The name of the other endpoint
	"addr1": "fd:1234:24::a", # The address of RouterA
	"addr2": "fd:1234:24::b", # The address of RouterB
	"routerId1": # The OSPFv3 Router ID of RouterA
	"routerId2": # The OSPFv3 Router ID of RouterB
	"metric": 1 # The IGP metric of the link
	"bw": 100000 # Bandwidth (in Mbits)
	"ava_bw": 100000 # Available bandwidth (in Mbits)
	"delay": 5 # Delay (in ms)
}

	Run your favorite DNS server on one of the nodes.

	Run the controller with the command below. Performance will be better if it is located near the OVSDB server. The configuration file options are documented in sr-ctrl/README.md.

sr-ctrl/sr-ctrl <sr-ctrl_configfile>

	Run the DNS proxy on the controller node. Performance will be better if it is located near the OVSDB server and the DNS server. The configuration file options are documented in sr-dnsproxy/README.md.

sr-dnsproxy/sr-dnsproxy <sr-dnsproxy_configfile>

	Run the sr-routed deamons on each access router. The configuration file and its parameters are documented in sr-routed/README.md.

sr-routed/sr-routed <sr-routed_configfile>

	Run generated sr-nsd/zebra and sr-nsd/ospf6d on one of the routers. The following option must be activated in ospf6d Quagga deamon configuration. Performance will be better if the selected router is located nea the OVSDB server.

router ospf6
 ovsdb_adv tcp <ovsdb-server-ip> 6640 SR_test

	Run example applications like sr-client/client or sr-testdns/sr-testdns by specifying the address of the sr-dnsproxy as the DNS resolver

Contributing to c-ares

To contribute patches to c-ares, please generate a GitHub pull request
and follow these guidelines:

	Check that the Travis builds are green for your pull request.

	Please update the test suite to add a test case for any new functionality.

	Build the library with ./configure --enable-debug --enable-maintainer-mode and
ensure there are no new warnings.

To improve the chances of the c-ares maintainers responding to your request:

	Also send an email to the mailing list at c-ares@cool.haxx.se describing your change.

	To follow any associated discussion, please subscribe to the mailing list [http://cool.haxx.se/mailman/listinfo/c-ares].

 ** This file is adapted from libcurl and not yet fully rewritten for c-ares! **

 ___ __ _ _ __ ___ ___
 / __| ___ / _` | '__/ _ \/ __|
 | (_ |___| (_| | | | __/__ \
 ___| __,_|_| ___||___/

 How To Compile

Installing Binary Packages

Lots of people download binary distributions of c-ares. This document
does not describe how to install c-ares using such a binary package.
This document describes how to compile, build and install c-ares from
source code.

Building from Git

If you get your code off a Git repository rather than an official
release tarball, see the GIT-INFO file in the root directory
for specific instructions on how to proceed.

In particular, if not using CMake you will need to run ./buildconf (Unix) or
buildconf.bat (Windows) to generate build files, and for the former
you will need a local installation of Autotools. If using CMake the steps are
the same for both Git and official release tarballs.

AutoTools Build

General Information, works on most Unix Platforms (Linux, FreeBSD, etc)

A normal Unix installation is made in three or four steps (after you’ve
unpacked the source archive):

./configure
make
make ahost adig acountry (optional)
make install

You probably need to be root when doing the last command.

If you have checked out the sources from the git repository, read the
GIT-INFO on how to proceed.

Get a full listing of all available configure options by invoking it like:

./configure --help

If you want to install c-ares in a different file hierarchy than /usr/local,
you need to specify that already when running configure:

./configure --prefix=/path/to/c-ares/tree

If you happen to have write permission in that directory, you can do make install without being root. An example of this would be to make a local
install in your own home directory:

./configure --prefix=$HOME
make
make install

More Options

To force configure to use the standard cc compiler if both cc and gcc are
present, run configure like

CC=cc ./configure
or
env CC=cc ./configure

To force a static library compile, disable the shared library creation
by running configure like:

./configure --disable-shared

If you’re a c-ares developer and use gcc, you might want to enable more
debug options with the --enable-debug option.

Special Cases

Some versions of uClibc require configuring with CPPFLAGS=-D_GNU_SOURCE=1
to get correct large file support.

The Open Watcom C compiler on Linux requires configuring with the variables:

./configure CC=owcc AR="$WATCOM/binl/wlib" AR_FLAGS=-q \
 RANLIB=/bin/true STRIP="$WATCOM/binl/wstrip" CFLAGS=-Wextra

CROSS COMPILE

(This section was graciously brought to us by Jim Duey, with additions by
Dan Fandrich)

Download and unpack the c-ares package.

cd to the new directory. (e.g. cd c-ares-1.7.6)

Set environment variables to point to the cross-compile toolchain and call
configure with any options you need. Be sure and specify the --host and
--build parameters at configuration time. The following script is an
example of cross-compiling for the IBM 405GP PowerPC processor using the
toolchain from MonteVista for Hardhat Linux.

#! /bin/sh

export PATH=$PATH:/opt/hardhat/devkit/ppc/405/bin
export CPPFLAGS="-I/opt/hardhat/devkit/ppc/405/target/usr/include"
export AR=ppc_405-ar
export AS=ppc_405-as
export LD=ppc_405-ld
export RANLIB=ppc_405-ranlib
export CC=ppc_405-gcc
export NM=ppc_405-nm

./configure --target=powerpc-hardhat-linux \
 --host=powerpc-hardhat-linux \
 --build=i586-pc-linux-gnu \
 --prefix=/opt/hardhat/devkit/ppc/405/target/usr/local \
 --exec-prefix=/usr/local

You may also need to provide a parameter like --with-random=/dev/urandom
to configure as it cannot detect the presence of a random number
generating device for a target system. The --prefix parameter
specifies where c-ares will be installed. If configure completes
successfully, do make and make install as usual.

In some cases, you may be able to simplify the above commands to as
little as:

./configure --host=ARCH-OS

Cygwin (Windows)

Almost identical to the unix installation. Run the configure script in the
c-ares root with sh configure. Make sure you have the sh executable in
/bin/ or you’ll see the configure fail toward the end.

Run make

QNX

(This section was graciously brought to us by David Bentham)

As QNX is targeted for resource constrained environments, the QNX headers
set conservative limits. This includes the FD_SETSIZE macro, set by default
to 32. Socket descriptors returned within the c-ares library may exceed this,
resulting in memory faults/SIGSEGV crashes when passed into select(..)
calls using fd_set macros.

A good all-round solution to this is to override the default when building
c-ares, by overriding CFLAGS during configure, example:

configure CFLAGS='-DFD_SETSIZE=64 -g -O2'

RISC OS

The library can be cross-compiled using gccsdk as follows:

CC=riscos-gcc AR=riscos-ar RANLIB='riscos-ar -s' ./configure \
 --host=arm-riscos-aof --without-random --disable-shared
make

where riscos-gcc and riscos-ar are links to the gccsdk tools.
You can then link your program with c-ares/lib/.libs/libcares.a.

Android

Method using a configure cross-compile (tested with Android NDK r7b):

	prepare the toolchain of the Android NDK for standalone use; this can
be done by invoking the script:

./tools/make-standalone-toolchain.sh

which creates a usual cross-compile toolchain. Lets assume that you put
this toolchain below /opt then invoke configure with something
like:

 export PATH=/opt/arm-linux-androideabi-4.4.3/bin:$PATH
 ./configure --host=arm-linux-androideabi [more configure options]
 make

	if you want to compile directly from our GIT repo you might run into
this issue with older automake stuff:

 checking host system type...
 Invalid configuration `arm-linux-androideabi':
 system `androideabi' not recognized
 configure: error: /bin/sh ./config.sub arm-linux-androideabi failed

this issue can be fixed with using more recent versions of config.sub
and config.guess which can be obtained here:
http://git.savannah.gnu.org/gitweb/?p=config.git;a=tree
you need to replace your system-own versions which usually can be
found in your automake folder:
find /usr -name config.sub

CMake builds

Current releases of c-ares introduce a CMake v3+ build system that has been
tested on most platforms including Windows, Linux, FreeBSD, MacOS, AIX and
Solaris.

In the most basic form, building with CMake might look like:

cd /path/to/cmake/source
mkdir build
cd build
cmake -DCMAKE_BUILD_TYPE=Release -DCMAKE_INSTALL_PREFIX=/usr/local/cares ..
make
sudo make install

Options

Options to CMake are passed on the command line using “-D${OPTION}=${VALUE}”.
The values defined are all boolean and take values like On, Off, True, False.

	CARES_STATIC - Build the static library (off by default)

	CARES_SHARED - Build the shared library (on by default)

	CARES_INSTALL - Hook in installation, useful to disable if chain building

	CARES_STATIC_PIC - Build the static library as position-independent (off by
default)

Ninja

Ninja is the next-generation build system meant for generators like CMake that
heavily parallize builds. Its use is very similar to the normal build:

cd /path/to/cmake/source
mkdir build
cd build
cmake -DCMAKE_BUILD_TYPE=Release -DCMAKE_INSTALL_PREFIX=/usr/local/cares -G "Ninja" ..
ninja
sudo ninja install

Windows MSVC Command Line

cd \path\to\cmake\source
mkdir build
cd build
cmake -DCMAKE_BUILD_TYPE=Release -DCMAKE_INSTALL_PREFIX=C:\cares -G "NMake Makefiles" ..
nmake
nmake install

Windows MinGW-w64 Command Line via MSYS

cd \path\to\cmake\source
mkdir build
cd build
cmake -DCMAKE_BUILD_TYPE=Release -DCMAKE_INSTALL_PREFIX=C:\cares -G "MSYS Makefiles" ..
make
make install

Platform-specific build systems

Win32

Building Windows DLLs and C run-time (CRT) linkage issues

As a general rule, building a DLL with static CRT linkage is highly
discouraged, and intermixing CRTs in the same app is something to
avoid at any cost.

Reading and comprehension of Microsoft Knowledge Base articles
KB94248 and KB140584 is a must for any Windows developer. Especially
important is full understanding if you are not going to follow the
advice given above.

	KB94248 [http://support.microsoft.com/kb/94248/en-us] - How To Use the C Run-Time

	KB140584 [http://support.microsoft.com/kb/140584/en-us] - How to link with the correct C Run-Time (CRT) library

	KB190799 [http://msdn.microsoft.com/en-us/library/ms235460] - Potential Errors Passing CRT Objects Across DLL Boundaries

If your app is misbehaving in some strange way, or it is suffering
from memory corruption, before asking for further help, please try
first to rebuild every single library your app uses as well as your
app using the debug multithreaded dynamic C runtime.

MingW32

Make sure that MinGW32’s bin dir is in the search path, for example:

set PATH=c:\mingw32\bin;%PATH%

then run ‘make -f Makefile.m32’ in the root dir.

MSVC 6 caveats

If you use MSVC 6 it is required that you use the February 2003 edition PSDK:
http://www.microsoft.com/msdownload/platformsdk/sdkupdate/psdk-full.htm

MSVC from command line

Run the vcvars32.bat file to get a proper environment. The
vcvars32.bat file is part of the Microsoft development environment and
you may find it in C:\Program Files\Microsoft Visual Studio\vc98\bin
provided that you installed Visual C/C++ 6 in the default directory.

Further details in README.msvc

MSVC IDEs

Details in README.msvc

Important static c-ares usage note

When building an application that uses the static c-ares library, you must
add -DCARES_STATICLIB to your CFLAGS. Otherwise the linker will look for
dynamic import symbols.

IBM OS/2

Building under OS/2 is not much different from building under unix.
You need:

	emx 0.9d

	GNU make

	GNU patch

	ksh

	GNU bison

	GNU file utilities

	GNU sed

	autoconf 2.13

If during the linking you get an error about _errno being an undefined
symbol referenced from the text segment, you need to add -D__ST_MT_ERRNO__
in your definitions.

If you’re getting huge binaries, probably your makefiles have the -g in
CFLAGS.

NetWare

To compile libcares.a / libcares.lib you need:

	either any gcc / nlmconv, or CodeWarrior 7 PDK 4 or later.

	gnu make and awk running on the platform you compile on;
native Win32 versions can be downloaded from:
http://www.gknw.net/development/prgtools/

	recent Novell LibC SDK available from:
http://developer.novell.com/ndk/libc.htm

	or recent Novell CLib SDK available from:
http://developer.novell.com/ndk/clib.htm

Set a search path to your compiler, linker and tools; on Linux make
sure that the var OSTYPE contains the string ‘linux’; set the var
NDKBASE to point to the base of your Novell NDK; and then type
make -f Makefile.netware from the top source directory;

PORTS

This is a probably incomplete list of known hardware and operating systems
that c-ares has been compiled for. If you know a system c-ares compiles and
runs on, that isn’t listed, please let us know!

 - Alpha Tru64 v5.0 5.1
 - ARM Android 1.5, 2.1, 2.3
 - MIPS IRIX 6.2, 6.5
 - Power AIX 3.2.5, 4.2, 4.3.1, 4.3.2, 5.1, 5.2
 - i386 Linux 1.3, 2.0, 2.2, 2.3, 2.4, 2.6
 - i386 Novell NetWare
 - i386 Windows 95, 98, ME, NT, 2000, XP, 2003
 - x86_64 Linux

Useful URLs

	c-ares: https://c-ares.haxx.se/

	MingW: http://www.mingw.org/

	MinGW-w64: http://mingw-w64.sourceforge.net/

	OpenWatcom: http://www.openwatcom.org/

c-ares license

Copyright (c) 2007 - 2018, Daniel Stenberg with many contributors, see AUTHORS
file.

Copyright 1998 by the Massachusetts Institute of Technology.

Permission to use, copy, modify, and distribute this software and its
documentation for any purpose and without fee is hereby granted, provided that
the above copyright notice appear in all copies and that both that copyright
notice and this permission notice appear in supporting documentation, and that
the name of M.I.T. not be used in advertising or publicity pertaining to
distribution of the software without specific, written prior permission.
M.I.T. makes no representations about the suitability of this software for any
purpose. It is provided “as is” without express or implied warranty.

c-ares

[image: ../../_images/c-ares.svg]Build Status [https://travis-ci.org/c-ares/c-ares]
[image: ../../_images/master.svg]Windows Build Status [https://ci.appveyor.com/project/c-ares/c-ares]
[image: ../../_images/badge.svg]Coverage Status [https://coveralls.io/github/c-ares/c-ares?branch=master]
[image: ../../_images/badge1.svg]CII Best Practices [https://bestpractices.coreinfrastructure.org/projects/291]
[image: ../../_images/c-ares1.svg]Releases [https://coderelease.io/github/repository/c-ares/c-ares]

This is c-ares, an asynchronous resolver library. It is intended for
applications which need to perform DNS queries without blocking, or need to
perform multiple DNS queries in parallel. The primary examples of such
applications are servers which communicate with multiple clients and programs
with graphical user interfaces.

The full source code is available in the ‘c-ares’ release archives [https://c-ares.haxx.se/download/],
and in a git repository: http://github.com/c-ares/c-ares. See the
INSTALL.md file for build information.

If you find bugs, correct flaws, have questions or have comments in general in
regard to c-ares (or by all means the original ares too), get in touch with us
on the c-ares mailing list: http://cool.haxx.se/mailman/listinfo/c-ares

c-ares is of course distributed under the same MIT-style license as the
original ares.

You’ll find all c-ares details and news here:
https://c-ares.haxx.se/

Notes for c-ares hackers

	The distributed ares_build.h file is only intended to be used on systems
which can not run the also distributed configure script.

	The distributed ares_build.h file is generated as a copy of ares_build.h.dist
when the c-ares source code distribution archive file is originally created.

	If you check out from git on a non-configure platform, you must run the
appropriate buildconf* script to set up ares_build.h and other local files
before being able to compile the library.

	On systems capable of running the configure script, the configure process
will overwrite the distributed ares_build.h file with one that is suitable
and specific to the library being configured and built, this new file is
generated from the ares_build.h.in template file.

	If you intend to distribute an already compiled c-ares library you MUST
also distribute along with it the generated ares_build.h which has been
used to compile it. Otherwise the library will be of no use for the users of
the library that you have built. It is your responsibility to provide this
file. No one at the c-ares project can know how you have built the library.

	File ares_build.h includes platform and configuration dependent info,
and must not be modified by anyone. Configure script generates it for you.

	We cannot assume anything else but very basic compiler features being
present. While c-ares requires an ANSI C compiler to build, some of the
earlier ANSI compilers clearly can’t deal with some preprocessor operators.

	Newlines must remain unix-style for older compilers’ sake.

	Comments must be written in the old-style /* unnested C-fashion */

	Try to keep line lengths below 80 columns.

c-ares release procedure - how to do a release

in the source code repo

	edit RELEASE-NOTES to be accurate

	edit Makefile.am’s CARES_VERSION_INFO, and CMakeLists.txt’s
CARES_LIB_VERSIONINFO set to the same value to denote the current shared
object versioning.

	make sure all relevant changes are committed on the master branch

	tag the git repo in this style: git tag -a cares-1_14_0 -a annotates the
tag and we use underscores instead of dots in the version number.

	run “./maketgz 1.14.0” to build the release tarball. It is important that
you run this on a machine with the correct set of autotools etc installed
as this is what then will be shipped and used by most users on *nix like
systems.

	push the git commits and the new tag

	gpg sign the tarball

	upload the resulting files to https://c-ares.haxx.se/download/

	update ares_version.h for the next version

in the c-ares-www repo

	edit index.t (version number and date),

	edit changelog.t (add the new release in there)

	commit all local changes

	tag the repo with the same tag as used for the source repo

	push the git commits and the new tag

inform

	send an email to the c-ares mailing list. Insert the RELEASE-NOTES into the
mail.

celebrate

	suitable beverage intake is encouraged for the festivities

c-ares security

This document is intended to provide guidance on how security vulnerabilities
should be handled in the c-ares project.

Publishing Information

All known and public c-ares vulnerabilities will be listed on the c-ares web
site [https://c-ares.haxx.se/vulns.html].

Security vulnerabilities should not be entered in the project’s public bug
tracker unless the necessary configuration is in place to limit access to the
issue to only the reporter and the project’s security team.

Vulnerability Handling

The typical process for handling a new security vulnerability is as follows.

No information should be made public about a vulnerability until it is
formally announced at the end of this process. That means, for example that a
bug tracker entry must NOT be created to track the issue since that will make
the issue public and it should not be discussed on the project’s public
mailing list. Also messages associated with any commits should not make any
reference to the security nature of the commit if done prior to the public
announcement.

	The person discovering the issue, the reporter, reports the vulnerability
privately to c-ares-security@haxx.se. That’s an email alias that reaches a
handful of selected and trusted people.

	Messages that do not relate to the reporting or managing of an undisclosed
security vulnerability in c-ares are ignored and no further action is
required.

	A person in the security team sends an e-mail to the original reporter to
acknowledge the report.

	The security team investigates the report and either rejects it or accepts
it.

	If the report is rejected, the team writes to the reporter to explain why.

	If the report is accepted, the team writes to the reporter to let him/her
know it is accepted and that they are working on a fix.

	The security team discusses the problem, works out a fix, considers the
impact of the problem and suggests a release schedule. This discussion
should involve the reporter as much as possible.

	The release of the information should be “as soon as possible” and is most
often synced with an upcoming release that contains the fix. If the
reporter, or anyone else, thinks the next planned release is too far away
then a separate earlier release for security reasons should be considered.

	Write a security advisory draft about the problem that explains what the
problem is, its impact, which versions it affects, solutions or
workarounds, when the release is out and make sure to credit all
contributors properly.

	Request a CVE number from
distros@openwall [http://oss-security.openwall.org/wiki/mailing-lists/distros]
when also informing and preparing them for the upcoming public security
vulnerability announcement - attach the advisory draft for information. Note
that ‘distros’ won’t accept an embargo longer than 19 days.

	Update the “security advisory” with the CVE number.

	The security team commits the fix in a private branch. The commit message
should ideally contain the CVE number. This fix is usually also distributed
to the ‘distros’ mailing list to allow them to use the fix prior to the
public announcement.

	At the day of the next release, the private branch is merged into the master
branch and pushed. Once pushed, the information is accessible to the public
and the actual release should follow suit immediately afterwards.

	The project team creates a release that includes the fix.

	The project team announces the release and the vulnerability to the world in
the same manner we always announce releases. It gets sent to the c-ares
mailing list and the oss-security mailing list.

	The security web page on the web site should get the new vulnerability
mentioned.

C-ARES-SECURITY (at haxx dot se)

Who is on this list? There are a couple of criteria you must meet, and then we
might ask you to join the list or you can ask to join it. It really isn’t very
formal. We basically only require that you have a long-term presence in the
c-ares project and you have shown an understanding for the project and its way
of working. You must’ve been around for a good while and you should have no
plans in vanishing in the near future.

We do not make the list of partipants public mostly because it tends to vary
somewhat over time and a list somewhere will only risk getting outdated.

c-ares Unit Test Suite

This directory holds unit tests for the c-ares library. To build the tests:

	Build the main c-ares library first, in the directory above this. To
enable tests of internal functions, configure the library build to expose
hidden symbols with ./configure --disable-symbol-hiding.

	Generate a configure file by running autoreconf -iv (which requires
a local installation of
autotools [https://www.gnu.org/software/automake/manual/html_node/Autotools-Introduction.html]).

	./configure

	make

	Run the tests with ./arestest, or ./arestest -v for extra debug info.

Points to note:

	The tests are written in C++11, and so need a C++ compiler that supports
this. To avoid adding this as a requirement for the library, the
configuration and build of the tests is independent from the library.

	The tests include some live queries, which will fail when run on a machine
without internet connectivity. To skip live tests, run with
./arestest --gtest_filter=-*.Live*.

	The tests include queries of a mock DNS server. This server listens on port
5300 by default, but the port can be changed with the -p 5300 option to
arestest.

Test Types

The test suite includes various different types of test.

	There are live tests (ares-test-live.cc), which assume that the
current machine has a valid DNS setup and connection to the
internet; these tests issue queries for real domains but don’t
particularly check what gets returned. The tests will fail on
an offline machine.

	There are some mock tests (ares-test-mock.cc) that set up a fake DNS
server and inject its port into the c-ares library configuration.
These tests allow specific response messages to be crafted and
injected, and so are likely to be used for many more tests in
future.

	To make this generation/injection easier, the dns-proto.h
file includes C++ helper classes for building DNS packets.

	Other library entrypoints that don’t require network activity
(e.g. ares_parse_*_reply) are tested directly.

	A couple of the tests use a helper method of the test fixture to
inject memory allocation failures, using a recent change to the
c-ares library that allows override of malloc/free.

	There are some tests of the internal entrypoints of the library
(ares-test-internal.c), but these are only enabled if the library
was configured with --disable-symbol-hiding and/or
--enable-expose-statics.

	There is also an entrypoint to allow Clang’s
libfuzzer [http://llvm.org/docs/LibFuzzer.html] to drive
the packet parsing code in ares_parse_*_reply, together with a
standalone wrapper for it (./aresfuzz) to allow use of command
line fuzzers (such as afl-fuzz [http://lcamtuf.coredump.cx/afl/])
for further fuzz testing.

Code Coverage Information

To generate code coverage information:

	Configure both the library and the tests with ./configure --enable-code-coverage before building. This requires the relevant code
coverage tools (gcov [https://gcc.gnu.org/onlinedocs/gcc/Gcov.html],
lcov [http://ltp.sourceforge.net/coverage/lcov.php]) to be installed locally.

	Run the tests with test/arestest.

	Generate code coverage output with make code-coverage-capture in the
library directory (i.e. not in test/).

Fuzzing

libFuzzer

To fuzz the packet parsing code with libFuzzer, follow the main
libFuzzer build instructions [http://llvm.org/docs/LibFuzzer.html#building]:

	Configure the c-ares library and test suite with a recent Clang and a sanitizer, for example:

% export CFLAGS="-fsanitize=address -fsanitize-coverage=edge"
% export CC=clang
% ./configure --disable-shared && make

	Download and build the libFuzzer code:

% cd test
% svn co http://llvm.org/svn/llvm-project/llvm/trunk/lib/Fuzzer
% clang++ -c -g -O2 -std=c++11 Fuzzer/*.cpp -IFuzzer
% ar ruv libFuzzer.a Fuzzer*.o

	Link each of the fuzzer entrypoints in with ares-fuzz.cc:

% $CC $CFLAGS -I.. -c ares-test-fuzz.c
% $CC $CFLAGS -I.. -c ares-test-fuzz-name.c
% clang++ $CFLAGS ares-test-fuzz.o ../.libs/libcares.a libFuzzer.a -o ares-libfuzzer
% clang++ $CFLAGS ares-test-fuzz-name.o ../.libs/libcares.a libFuzzer.a -o ares-libfuzzer-name

	Run the fuzzer using the starting corpus with:

% ./ares-libfuzzer fuzzinput/ # OR
% ./ares-libfuzzer-name fuzznames/

AFL

To fuzz using AFL, follow the
AFL quick start guide [http://lcamtuf.coredump.cx/afl/QuickStartGuide.txt]:

	Download and build AFL.

	Configure the c-ares library and test tool to use AFL’s compiler wrappers:

% export CC=$AFLDIR/afl-gcc
% ./configure --disable-shared && make
% cd test && ./configure && make aresfuzz aresfuzzname

	Run the AFL fuzzer against the starting corpus:

% mkdir fuzzoutput
% $AFLDIR/afl-fuzz -i fuzzinput -o fuzzoutput -- ./aresfuzz # OR
% $AFLDIR/afl-fuzz -i fuzznames -o fuzzoutput -- ./aresfuzzname

AFL Persistent Mode

If a recent version of Clang is available, AFL can use its built-in compiler
instrumentation; this configuration also allows the use of a (much) faster
persistent mode, where multiple fuzz inputs are run for each process invocation.

	Download and build a recent AFL, and run make in the llvm_mode
subdirectory to ensure that afl-clang-fast gets built.

	Configure the c-ares library and test tool to use AFL’s clang wrappers that
use compiler instrumentation:

% export CC=$AFLDIR/afl-clang-fast
% ./configure --disable-shared && make
% cd test && ./configure && make aresfuzz

	Run the AFL fuzzer (in persistent mode) against the starting corpus:

% mkdir fuzzoutput
% $AFLDIR/afl-fuzz -i fuzzinput -o fuzzoutput -- ./aresfuzz

SRN controller

Usage:

$./sr-ctrl [-d] <sr-ctrl_configfile>

We can use the “-d” option for dry run.
Meaning that the program only tests the syntax of the configuration file.

Configuration

The SRN controller has the following parameters:

	ovsdb_client The command to run to execute ovsdb-client executable

	ovsdb_server The OVSDB server specification as defined in ovsdb-client(1) [https://www.systutorials.com/docs/linux/man/1-ovsdb-client/]

	ovsdb_database The name of the database on the OVSDB server

	rules_file The name of the rules configuration file

	worker_threads The number of threads answering to requests from applications

	req_buffer_size The size of the request queue; in case of overflow, requests are dropped

	ntransacts The number of threads interacting wih the OVSDB server

	zlog_conf_file The path to a logging file

The following snippet shows a working configuration for a controller
on the same machine as the OVSDB server listening on port 6640:

ovsdb_client "ovsdb-client"
ovsdb_server "tcp:[::1]:6640"
ovsdb_database "SR_test"
rules_file "rules.conf"
worker_threads 1
req_buffer_size 10
ntransacts 1
zlog_conf_file "output.log"

SRN DNS proxy

Usage:

$./sr-dnsproxy [-d] <sr-dnsproxy_configfile>

We can use the “-d” option for dry run.
Meaning that the program only tests the syntax of the configuration file before exiting.

Configuration

The DNS proxy has the following parameters:

	ovsdb_client The command to run to execute ovsdb-client executable

	ovsdb_server The OVSDB server specification as defined in ovsdb-client(1) [https://www.systutorials.com/docs/linux/man/1-ovsdb-client/]

	ovsdb_database The name of the database on the OVSDB server

	router_name The name of the router in the NodeState database

	max_queries The maximum number of requests in the queue before dropping

	proxy_listen_addr The address on which the DNS proxy listens

	proxy_listen_port The port on which the DNS proxy listens

	dns_server_port The port of the actual DNS server

	dns_server The address of the actual DNS server

	client_server_fifo The path where an internal fifo will be created (the file should not exist prior to the execution of the program)

	ntransacts The number of threads interacting wih the OVSDB server

	zlog_conf_file The path to a logging file

The following snippet shows a working configuration for a DNS proxy
on the same machine as the OVSDB server listening on port 6640
and the actual DNS server listening on port 2000:

ovsdb_client "ovsdb-client"
ovsdb_server "tcp:[::1]:6640"
ovsdb_database "SR_test"
router_name "RouterA"
max_queries 500
proxy_listen_addr "::"
proxy_listen_port "53"
dns_server_port "2000"
dns_server "::1"
ntransacts 1
client_server_fifo "client_server.fifo"
zlog_conf_file "output.log"

title: Conventions for working on Quagga
papersize: a4paper
geometry: a4paper,scale=0.82
fontsize: 11pt
toc: true
date: \today
include-before:
\large This is a living document describing the processes and guidelines
for working on Quagga. You must read Section
“REQUIRED READING”, before contributing to Quagga.

Suggestions for updates, via the
quagga-dev list [http://lists.quagga.net/mailman/listinfo/quagga-dev],
are welcome. \newpage
…

\newpage

OBJECTIVES {#sec:goals}

The objectives of the Quagga project are to develop and implement high
quality routing protocols and related software, maximising:

	Free software:

	Quagga is and will remain a copyleft, free software project

	Some non-core parts may be available under compatible, permissive
licenses to facilitate code sharing, where contributors agree.

	The test and integration orchestration infrastructure shall be free
software, developed similarly to the rest of Quagga. Proprietary
conformance suites may be among the test tools orchestrated.

	Openness and transparency

	The business of the project shall be conducted on its public email
lists, to the greatest extent possible.

	The design of the software will be governed by open discussion on
the public email lists.

	Participants shall endeavour to be transparent about their interests
in the project, and any associations likely to be relevant.

	Ethical behaviour:

	The licenses of all copyright holders will be respected, and the
project will err in their favour where there is reasonable doubt or
legal advice to that effect.

	Participants will behave with respect for others, and in a manner that
builds and maintains the trust needed for productive collaboration.

See also the Section on CODE OF CONDUCT.

Governance {#sec:governance}

Quagga is a Sociocracy, as it has been since its earliest days.

Quagga was forked from GNU Zebra by Paul Jakma, who holds the domain name.
Governance was soon devolved to a collective group, the maintainers,
consisting of those who regularly contributed and reviewed code. The
details can easily be changed.

You are free to use reason to persuade others to adopt some alternative.
If, after that, you truly can not abide by what is mutually agreeable, you
are asked to do the honourable thing: take your copy of the code, make your
apologies, and be on your way with good grace.

Those who repeatedly violate the Code of Conduct will be
asked to leave.

Holding of project assets

One or more mature, independent trustees, with technical and free software
experience, will be appointed as the executor(s) for key assets of the
project to ensure continuity, such as the domain name.

Should a corporate vehicle ever be created to hold such assets it must:

	Publish up to date accounts on a regular business.

	Generally operate openly and transparently.

	Have control distributed, with a significant degree of control held
independent of any contributors with business interests in the software.

	Carry out no other business itself that may be seen to conflict or compete
with the business of others in the community.

	Have all officers disclose all interests that could be
seen to have a bearing on the project, as far as is reasonable.

It not clear at this time that the overheads and potential liabilities of
such a vehicle would be appropriate for this project. These principles
should though still be applied, where possible, to any non-corporate body
formed around the project.

CODE OF CONDUCT {#sec:codeconduct}

Participants will treat each other with respect and integrity. Participants
will build and treasure the trust that is required for parties to
successfully collaborate together on free software. Particularly when those
parties may have competing interests. The following principles and
guidelines should be followed to foster that trust:

	Participants should be open about their goals, and their interests.

	Business associations with other participants should be disclosed,
so far as is reasonable and where applicable. E.g., if there is voting
on matters, or in endorsements or objections to contributions.

	Other associations and interests that may be relevant should be
disclosed, to the degree necessary to avoid any perception
by others of conflicts of interests or of deception.

	Be open about your goals, so as to maximise the common understanding
and minimise any misunderstandings and disputes.

	Design should be done in the open

	Do your design on list, ahead of significant implementation. Avoid
“Surprise!” development where possible.

	Where significant implementation work must be done behind closed
doors, accept that you may be asked to rework it, potentially from
scratch once you take it public.

	Get “buy in” from others ahead of time, to avoid disappointment.

	Interaction

	Feedback on design should be constructive, thoughtful and
understanding.

	Avoid personalising matters. Discuss the idea, the code, the abstract
subject and avoid unnecessary personal pronouns.

	Avoid language that paints either party into a corner. Leave some room
for doubt. Ask questions, rather than make assertions, where possible.

	Disputes should be resolved through calm, analytic discussion

	Separate out as much of the matter under dispute into principles that
can be agreed on, and into the objective domain (by measurement or
logic).

	Seek ways to resolve any remaining subjective differences by alternate
paths that can accommodate both sides, e.g., through abstraction or
modularisation.

	Aim for Win-Win.

	Respect others

	Avoid passive-aggressive behaviours. E.g., tit-for-tat
non-constructive behaviour. Be explicit.

	It is acceptable for management to allocate resources on development
according to their need. It is not acceptable to try use external,
management intervention to over-turn positions held by participants.

REQUIRED READING {#sec:required}

Note well: By proposing a change to Quagga, by whatever means, you are
implicitly agreeing:

	To licence your contribution according to the licence of any files in
Quagga being modified, and according to the COPYING file in the
top-level directory of Quagga, other than where the contribution
explicitly and clearly indicates otherwise.

	That it is your responsibility to ensure you hold whatever rights are
required to be able to contribute your changes under the licenses of the
files in Quagga being modified, and the top-level COPYING file.

	That it is your responsibility to give with the contribution a full
account of all interests held and claims in the contribution; such as
through copyright, trademark and patent laws or otherwise; that are known
to you or your associates (e.g. your employer).

Before contributing to Quagga, you must also read
Section COMMIT MESSAGES.

You should ideally read the entire document, as it contains useful
information on the community norms and how to implement them.

Please note that authorship and any relevant other rights information should
be explicitly stated with the contribution. A “Signed-off-by” line is
not sufficient. The “Signed-off-by” line is not used by the Quagga
project.

You may document applicable copyright claims to files being modified or
added by your contribution. For new files, the standard way is to add a
string in the following format near the beginning of the file:

Copyright (C) <Year> <name of person/entity>[, optional contact details]

When adding copyright claims for modifications to an existing file, please
preface the claim with “Portions: “ on a line before it and indent the
“Copyright …” string. If such a case already exists, add your indented
claim immediately after. E.g.:

Portions:
 Copyright (C) <Year> <Entity A>
 Copyright (C) <Year> <Your details> [optional brief change description]

GUIDELINES FOR HACKING ON QUAGGA {#sec:guidelines}

GNU coding standards apply. Indentation follows the result of
invoking GNU indent (as of 2.2.8a) with the -–nut argument.

Originally, tabs were used instead of spaces, with tabs are every 8 columns.
However, tab’s interoperability issues mean space characters are now preferred for
new changes. We generally only clean up whitespace when code is unmaintainable
due to whitespace issues, to minimise merging conflicts.

Be particularly careful not to break platforms/protocols that you
cannot test.

Parsers or packet-writers of data from untrusted parties, particularly
remote ones, MUST use the lib/stream bounded-buffer abstraction, and use
its checked getters and putters. Twiddling of pointers based on contents of
untrusted data is strongly discouraged - any such code is not acceptable,
unless there are very good reasons (e.g. compatibility with external or old
code that is not easily rewritten).

New code should have good comments, which explain why the code is correct.
Changes to existing code should in many cases upgrade the comments when
necessary for a reviewer to conclude that the change has no unintended
consequences.

Each file in the Git repository should have a git format-placeholder (like
an RCS Id keyword), somewhere very near the top, commented out appropriately
for the file type. The placeholder used for Quagga (replacing <dollar>
with $) is:

$QuaggaId: <dollar>Format:%an, %ai, %h<dollar> $

See line 2 of HACKING.tex, the source for this document, for an example.

This placeholder string will be expanded out by the ‘git archive’ commands,
which is used to generate the tar archives for snapshots and releases.

Please document fully the proper use of a new function in the header file
in which it is declared. And please consult existing headers for
documentation on how to use existing functions. In particular, please consult
these header files:

lib/log.h logging levels and usage guidance

[more to be added]

If changing an exported interface, please try to deprecate the interface in
an orderly manner. If at all possible, try to retain the old deprecated
interface as is, or functionally equivalent. Make a note of when the
interface was deprecated and guard the deprecated interface definitions in
the header file, i.e.:

/* Deprecated: 20050406 */
#if !defined(QUAGGA_NO_DEPRECATED_INTERFACES)
#warning "Using deprecated <libname> (interface(s)|function(s))"
...
#endif /* QUAGGA_NO_DEPRECATED_INTERFACES */

This is to ensure that the core Quagga sources do not use the deprecated
interfaces (you should update Quagga sources to use new interfaces, if
applicable), while allowing external sources to continue to build.
Deprecated interfaces should be excised in the next unstable cycle.

Note: If you wish, you can test for GCC and use a function
marked with the ’deprecated’ attribute. However, you must provide the
warning for other compilers.

If changing or removing a command definition, ensure that you
properly deprecate it - use the _DEPRECATED form of the appropriate DEFUN
macro. This is critical. Even if the command can no longer
function, you MUST still implement it as a do-nothing stub.

Failure to follow this causes grief for systems administrators, as an
upgrade may cause daemons to fail to start because of unrecognised commands.
Deprecated commands should be excised in the next unstable cycle. A list of
deprecated commands should be collated for each release.

See also Section SHARED LIBRARY VERSIONING below.

YOUR FIRST CONTRIBUTIONS

Routing protocols can be very complex sometimes. Then, working with an
Opensource community can be complex too, but usually friendly with
anyone who is ready to be willing to do it properly.

	First, start doing simple tasks. Quagga’s patchwork is a good place
to start with. Pickup some patches, apply them on your git trie,
review them and send your ack’t or review comments. Then, a
maintainer will apply the patch if ack’t or the author will have to
provide a new update. It help a lot to drain the patchwork queues.
See http://patchwork.quagga.net/project/quagga/list/

	The more you’ll review patches from patchwork, the more the Quagga’s
maintainers will be willing to consider some patches you will be
sending.

	start using git clone, pwclient
http://patchwork.quagga.net/help/pwclient/

$ pwclient list -s new
ID State Name
-- ----- ----
179 New [quagga-dev,6648] Re: quagga on FreeBSD 4.11 (gcc-2.95)
181 New [quagga-dev,6660] proxy-arp patch
[...]

$ pwclient git-am 1046

HANDY GUIDELINES FOR MAINTAINERS

Get your cloned trie:

 git clone vjardin@git.sv.gnu.org:/srv/git/quagga.git

Apply some ack’t patches:

 pwclient git-am 1046
 Applying patch #1046 using 'git am'
 Description: [quagga-dev,11595] zebra: route_unlock_node is missing in "show ip[v6] route <prefix>" commands
 Applying: zebra: route_unlock_node is missing in "show ip[v6] route <prefix>" commands

Run a quick review. If the ack’t was not done properly, you know who you have
to blame.

Push the patches:

 git push

Set the patch to accepted on patchwork

 pwclient update -s Accepted 1046

COMPILE-TIME CONDITIONAL CODE

Please think very carefully before making code conditional at compile time,
as it increases maintenance burdens and user confusion. In particular,
please avoid gratuitous -–enable-… switches to the configure script -
typically code should be good enough to be in Quagga, or it shouldn’t be
there at all.

When code must be compile-time conditional, try have the compiler make it
conditional rather than the C pre-processor - so that it will still be
checked by the compiler, even if disabled. I.e. this:

 if (SOME_SYMBOL)
 frobnicate();

rather than:

 #ifdef SOME_SYMBOL
 frobnicate ();
 #endif /* SOME_SYMBOL */

Note that the former approach requires ensuring that SOME_SYMBOL will
be defined (watch your AC_DEFINEs).

COMMIT MESSAGES {#sec:commit-messages}

The commit message requirements are:

	The message MUST provide a suitable one-line summary followed by a
blank line as the very first line of the message, in the form:

topic: high-level, one line summary

Where topic would tend to be name of a subdirectory, and/or daemon, unless
there’s a more suitable topic (e.g. ’build’). This topic is used to
organise change summaries in release announcements.

	It should have a suitable “body”, which tries to address the
following areas, so as to help reviewers and future browsers of the
code-base understand why the change is correct (note also the code
comment requirements):

	The motivation for the change (does it fix a bug, if so which?
add a feature?)

	The general approach taken, and trade-offs versus any other
approaches.

	Any testing undertaken or other information affecting the confidence
that can be had in the change.

	Information to allow reviewers to be able to tell which specific
changes to the code are intended (and hence be able to spot any accidental
unintended changes).

	The commit message must give details of all the authors of the change,
beyond the person listed in the Author field. Any and all affiliations
which may have a bearing on copyright in any way should be clearly
stated, unless those affiliations are already obvious from other
details, e.g. from the email address. This would cover employment and
contracting obligations (give details).

Note: Do not rely on “Signed-off-by” for this, be explicit.

	If the change introduces a new dependency on any code or other
copyrighted material, please explicitly note this. Give details of what
that external material is, the copyright licence the material may be
used under, and the nature of the dependency.

The one-line summary must be limited to 54 characters, and all other
lines to 72 characters.

Commit message bodies in the Quagga project have typically taken the
following form:

	An optional introduction, describing the change generally.

	A short description of each specific change made, preferably:

	file by file

	function by function (use of “ditto”, or globs is allowed)

Contributors are strongly encouraged to follow this form.

This itemised commit messages allows reviewers to have confidence that the
author has self-reviewed every line of the patch, as well as providing
reviewers a clear index of which changes are intended, and descriptions for
them (C-to-english descriptions are not desirable - some discretion is
useful). For short patches, a per-function/file break-down may be
redundant. For longer patches, such a break-down may be essential. A
contrived example (where the general discussion is obviously somewhat
redundant, given the one-line summary):

zebra: Enhance frob FSM to detect loss of frob

Add a new DOWN state to the frob state machine to allow the barinator to
detect loss of frob.

* frob.h: (struct frob) Add DOWN state flag.
* frob.c: (frob_change) set/clear DOWN appropriately on state change.
* bar.c: (barinate) Check frob for DOWN state.

Please have a look at the git commit logs to get a feel for what the norms
are.

Note that the commit message format follows git norms, so that “git log
–oneline” will have useful output.

HACKING THE BUILD SYSTEM

If you change or add to the build system (configure.ac, any Makefile.am,
etc.), please heck that the following things still work:

	make dist

	resulting dist tarball builds

	out-of-tree builds

This can be achieved by running ‘make distcheck’

The quagga.net site relies on make dist to work to generate snapshots. It
must work. Common problems are to forget to have some additional file
included in the dist, or to have a make rule refer to a source file without
using the srcdir variable.

RELEASE PROCEDURE

To make a release:

	Edit configure.ac, bump the version and commit the change with
a “release: <version” subject.

The ‘release.sh’ script should then be used. It should be run with 2
arguments, the release tag for the release to be carried, and the tag of the
previous release, e.g.:

release.sh quagga-1.1.1 quagga-1.1.0

The ‘release.sh’ will carry out these steps for you:

	Tag the appropriate commit with a release tag (follow existing
conventions), with:

git tag -u

 Building your own Quagga RPM

Building your own Quagga RPM

(Tested on CentOS 6, CentOS 7 and Fedora 22.)

	Install the following packages to build the RPMs:

 yum install git autoconf automake libtool make gawk readline-devel \
 texinfo dejagnu net-snmp-devel groff rpm-build net-snmp-devel \
 libcap-devel texi2html

(use dnf install on new Fedora instead of yum install)

	Checkout Quagga under a unpriviledged user account

 git clone git://git.savannah.nongnu.org/quagga.git quagga

	Run Bootstrap and make distribution tar.gz

 cd quagga
 ./bootstrap.sh
 ./configure --with-pkg-extra-version=-MyRPMVersion
 make dist

Note: configure parameters are not important for the RPM building - except the
with-pkg-extra-version if you want to give the RPM a specific name to
mark your own unoffical build

	Create RPM directory structure and populate with sources

 mkdir rpmbuild
 mkdir rpmbuild/SOURCES
 mkdir rpmbuild/SPECS
 cp redhat/*.spec rpmbuild/SPECS/
 cp quagga*.tar.gz rpmbuild/SOURCES/

	Edit rpm/SPECS/quagga.spec with configuration as needed
Look at the beginning of the file and adjust the following parameters to enable
or disable features as required:

 ################# Quagga configure options ####################
 # with-feature options
 %{!?with_snmp: %global with_snmp 1 }
 %{!?with_vtysh: %global with_vtysh 1 }
 %{!?with_ospf_te: %global with_ospf_te 1 }
 %{!?with_opaque_lsa: %global with_opaque_lsa 1 }
 %{!?with_tcp_zebra:	 %global with_tcp_zebra 0 }
 %{!?with_vtysh: %global with_vtysh 1 }
 %{!?with_pam: %global with_pam 1 }
 %{!?with_ospfclient: %global with_ospfclient 1 }
 %{!?with_ospfapi: %global with_ospfapi 1 }
 %{!?with_irdp: %global with_irdp 1 }
 %{!?with_rtadv: %global with_rtadv 1 }
 %{!?with_isisd: %global with_isisd 1 }
 %{!?with_pimd: %global with_pimd 1 }
 %{!?with_shared: %global with_shared 1 }
 %{!?with_multipath: %global with_multipath 64 }
 %{!?quagga_user: %global quagga_user quagga }
 %{!?vty_group: %global vty_group quaggavt }
 %{!?with_fpm: %global with_fpm 0 }
 %{!?with_watchquagga: %global with_watchquagga 1 }

	Build the RPM

 rpmbuild --define "_topdir `pwd`/rpmbuild" -ba rpmbuild/SPECS/quagga.spec

DONE.

If all works correctly, then you should end up with the RPMs under rpmbuild/RPMS
and the Source RPM under rpmbuild/SRPMS

Enabling daemons after installation of the package:

init.d based systems (ie CentOS 6):

	Enable the daemons as needed to run after boot (Zebra is mandatory)

 chkconfig zebra on
 chkconfig ospfd on
 chkconfig ospf6d on
 chkconfig bgpd on
 ... etc

	If you want to run watchquagga, then configure /etc/sysconfig/quagga
and uncomment the line with the daemons for watchquagga to monitor,
then enable watchquagga

 chkconfig watchquagga on

	Check your firewall / IPtables to make sure the routing protocols are
allowed.

	Start the daemons (or reboot)

 service zebra start
 service bgpd start
 service ospfd start
 ... etc

Configuration is stored in /etc/quagga/*.conf files.

systemd based systems (ie CentOS 7, Fedora 22)

	Enable the daemons as needed to run after boot (Zebra is mandatory)

 systemctl enable zebra
 systemctl enable ospfd
 systemctl enable ospf6d
 systemctl enable bgpd
 ... etc

Note: There is no watchquagga on systemd based systems. Systemd contains
the functionality of monitoring and restarting daemons.

	Check your firewall / IPtables to make sure the routing protocols are
allowed.

	Start the daemons (or reboot)

 systemctl start zebra
 systemctl start bgpd
 systemctl start ospfd
 ... etc

Configuration is stored in /etc/quagga/*.conf files.

 SRN Routing daemon

SRN Routing daemon

Usage:

$./sr-routed [-d] <sr-routed_configfile>

We can use the “-d” option for dry run.
Meaning that the program only tests the syntax of the configuration file before exiting.

Configuration

The routing daemon has the following parameters:

	ovsdb_client The command to run to execute ovsdb-client executable

	ovsdb_server The OVSDB server specification as defined in ovsdb-client(1) [https://www.systutorials.com/docs/linux/man/1-ovsdb-client/]

	ovsdb_database The name of the database on the OVSDB server

	router_name The name of the router in the NodeState database

	localsid The name of the Local SID Table that will parse the segments (see documentation [https://segment-routing.org/index.php/Implementation/AdvancedConf]).

	ingress_iface The name of an interface of the router (the actual interface used does not matter as long as it is not the loopback).

	ntransacts The number of threads interacting wih the OVSDB server

	zlog_conf_file The path to a logging file

The following snippet shows a working configuration for a DNS proxy
on the same machine as the OVSDB server listening on port 6640
and the local SID table is called RouterA.localsid:

ovsdb_client "ovsdb-client"
ovsdb_server "tcp:[::1]:6640"
ovsdb_database "SR_test"
router_name "RouterA"
localsid "RouterA.localsid"
ingress_iface "RouterA-eth0"
ntransacts 1
client_server_fifo "client_server.fifo"
zlog_conf_file "output.log"

_static/comment.png

_static/down-pressed.png

_static/comment-b